Life's becoming a little more difficult for lawbreakers, thanks
to some new digital technologies. For example, British researchers have
developed a fingerprint compression technology that transmits prints
from a crime scene to a fingerprint bureau in a fraction of the typical
four to 20 minutes. The same researchers are working on a technology to
identify shoe impressions taken from crime scenes-a procedure currently
done manually.
Police in Richmond, Virginia, are introducing data mining, predictive analysis and business intelligence tools to respond more rapidly to a crime, and possibly to prevent future crime from occurring. LAPD police are using video surveillance and criminal recognition software to get a bird's-eye view of activities in a crime-riddled area.
CompStat
Various technologies are gaining prominence, such as the somewhat controversial but highly regarded CompStat. CompStat assists law enforcement organizations in collecting and organizing crime information quickly. This, in turn, allows officials to identify emerging patterns in criminal activity, and allows police agencies to deploy resources more effectively.
According to BlogHouston.net , proponents describe this technology as an "advanced statistical analysis of crime aimed at preventing future crime."
This award-winning program is said to have reduced crime rates through increased police accountability.
Various law enforcement agencies across the United States, including the NYPD and the LYPD, use this program to analyze data and plan crime-prevention tactics. The program apparently played a key role in the well-documented reduction in crime enjoyed by New York City under the hand of former mayor Rudy Giuliani.
In With the Old
Sometimes harnessing the power of crime-fighting technologies involves using older technologies in new and inventive ways. For example, in late 2006, New York City announced plans to equip 911 call centers to receive digital images and digital videos sent from cell phones and computers. When citizens report a crime in progress, they can simultaneously send pictures or video of the crime scene, the perpetrator or the victim.
The digital imagery provides emergency response workers and law enforcement teams with a better understanding of the situation, and is likely to offer information not provided by panicked callers. The response teams can therefore better access the preferred approach to handling the incident. Empowering citizens to use everyday technology in this way was a world first, according to Mayor Michael Bloomberg.
In a similar vein, the New York City is combating domestic violence in part through the MapInfo Professional mapping software application. This tool allows law enforcement personnel to better visualize relationships between data and geography.
The city is also using MapInfo's Mapmaker tool for mapping and analyzing data and adding geographic coordinates to database records. A city spokesperson reported that he had imported miscellaneous, city-based data-such as roadmaps, English proficiency ratings and homicide rates-into MapInfo, and then overlaid that over a map of the city to display patterns and trends.
The information generated by these tools assists the city in deciding how resources should be allocated. It also reveals information about an area's cultural makeup and languages most often spoken in that community. Knowing where domestic violence victims live and the language they speak allows law enforcement officers to better communicate with victims.
Real-Life Success
These and other forensic technologies translate into real-life success stories that impact upon our lives in ways we could not have imagined 20 years ago. For example, in San Jose in October, a man driving a stolen Toyota kidnapped a 12-year-old girl. The girl escaped and reported the incident to the police. The kidnapper abandoned the Toyota. Some hours later, a patrol car using license-plate recognition technology passed the Toyota. "Stolen car" remarked the technology's computer-generated voice. The police officer discovered evidence in the Toyota that led to the arrest of the kidnapper.
Europe and Britain have used license-plate recognition technology for more than 20 years, but it is relatively new on the scene in the United States. The police have been able to enter license plates into a computer manually, but this technology lets them scan the plate of every car they pass. An officer can now check as many as 12,000 plates per shift, instead of the 50 that could be done manually. Although the technology raises concerns with privacy watchdogs, it is difficult to argue that any privacy violation occurred in this example.
In another interesting and recent development, Thai researchers used nanotechnology to develop a set of eyeglasses that easily detect invisible traces of bodily fluids left at a crime scene. The scientists applied nano crystallized indium osynitride to glass or plastic lenses. These special lenses can filter light waves of various lengths, and allow the user to see invisible traces of saliva, sperm, blood and lymph immediately.
The current technology-a forensic light source-also allows investigators to see traces that cannot be seen with the naked eye. However, this is an awkward and time-consuming procedure, since forensic teams must check separately for each type of fluid. Once the new technology is patented and commercialized, it will dramatically speed up this process.
Closer to home, researchers at the University of Missouri-Columbia have found a mathematical solution that can separate one sound from another in a recording of a noisy environment. In what is referred to as the "cocktail party" problem, sound editing technologies have been unable to separate one voice from many voices in busy environments, such as the cocktail party example, or in a crowded mall. Researchers in the past have separated voices, but could not reproduce the voice's characteristics.
Current technologies are not completely reliable because they confuse voices with other voices with similar pitches. With the new mathematical solution and assistance from computer programmers, the researchers hope to develop a software application that will allow law enforcement agencies or the Department of Homeland Security to isolate voices or sounds with reliability.
Sadly, though, there's a flip side to all this good news. In an interview with Computerworld magazine, Frank Abagnale, the notorious (former) criminal depicted in the movie Catch Me if you Can , remarked that it would be 4,000 times easier for him to commit his crimes today than it was 40 years ago-and that today he probably wouldn't go to prison for it.
"Technology breeds crime-it always has, it always will," he is reported to have said.
Police in Richmond, Virginia, are introducing data mining, predictive analysis and business intelligence tools to respond more rapidly to a crime, and possibly to prevent future crime from occurring. LAPD police are using video surveillance and criminal recognition software to get a bird's-eye view of activities in a crime-riddled area.
CompStat
Various technologies are gaining prominence, such as the somewhat controversial but highly regarded CompStat. CompStat assists law enforcement organizations in collecting and organizing crime information quickly. This, in turn, allows officials to identify emerging patterns in criminal activity, and allows police agencies to deploy resources more effectively.
According to BlogHouston.net , proponents describe this technology as an "advanced statistical analysis of crime aimed at preventing future crime."
This award-winning program is said to have reduced crime rates through increased police accountability.
Various law enforcement agencies across the United States, including the NYPD and the LYPD, use this program to analyze data and plan crime-prevention tactics. The program apparently played a key role in the well-documented reduction in crime enjoyed by New York City under the hand of former mayor Rudy Giuliani.
In With the Old
Sometimes harnessing the power of crime-fighting technologies involves using older technologies in new and inventive ways. For example, in late 2006, New York City announced plans to equip 911 call centers to receive digital images and digital videos sent from cell phones and computers. When citizens report a crime in progress, they can simultaneously send pictures or video of the crime scene, the perpetrator or the victim.
The digital imagery provides emergency response workers and law enforcement teams with a better understanding of the situation, and is likely to offer information not provided by panicked callers. The response teams can therefore better access the preferred approach to handling the incident. Empowering citizens to use everyday technology in this way was a world first, according to Mayor Michael Bloomberg.
In a similar vein, the New York City is combating domestic violence in part through the MapInfo Professional mapping software application. This tool allows law enforcement personnel to better visualize relationships between data and geography.
The city is also using MapInfo's Mapmaker tool for mapping and analyzing data and adding geographic coordinates to database records. A city spokesperson reported that he had imported miscellaneous, city-based data-such as roadmaps, English proficiency ratings and homicide rates-into MapInfo, and then overlaid that over a map of the city to display patterns and trends.
The information generated by these tools assists the city in deciding how resources should be allocated. It also reveals information about an area's cultural makeup and languages most often spoken in that community. Knowing where domestic violence victims live and the language they speak allows law enforcement officers to better communicate with victims.
Real-Life Success
These and other forensic technologies translate into real-life success stories that impact upon our lives in ways we could not have imagined 20 years ago. For example, in San Jose in October, a man driving a stolen Toyota kidnapped a 12-year-old girl. The girl escaped and reported the incident to the police. The kidnapper abandoned the Toyota. Some hours later, a patrol car using license-plate recognition technology passed the Toyota. "Stolen car" remarked the technology's computer-generated voice. The police officer discovered evidence in the Toyota that led to the arrest of the kidnapper.
Europe and Britain have used license-plate recognition technology for more than 20 years, but it is relatively new on the scene in the United States. The police have been able to enter license plates into a computer manually, but this technology lets them scan the plate of every car they pass. An officer can now check as many as 12,000 plates per shift, instead of the 50 that could be done manually. Although the technology raises concerns with privacy watchdogs, it is difficult to argue that any privacy violation occurred in this example.
In another interesting and recent development, Thai researchers used nanotechnology to develop a set of eyeglasses that easily detect invisible traces of bodily fluids left at a crime scene. The scientists applied nano crystallized indium osynitride to glass or plastic lenses. These special lenses can filter light waves of various lengths, and allow the user to see invisible traces of saliva, sperm, blood and lymph immediately.
The current technology-a forensic light source-also allows investigators to see traces that cannot be seen with the naked eye. However, this is an awkward and time-consuming procedure, since forensic teams must check separately for each type of fluid. Once the new technology is patented and commercialized, it will dramatically speed up this process.
Closer to home, researchers at the University of Missouri-Columbia have found a mathematical solution that can separate one sound from another in a recording of a noisy environment. In what is referred to as the "cocktail party" problem, sound editing technologies have been unable to separate one voice from many voices in busy environments, such as the cocktail party example, or in a crowded mall. Researchers in the past have separated voices, but could not reproduce the voice's characteristics.
Current technologies are not completely reliable because they confuse voices with other voices with similar pitches. With the new mathematical solution and assistance from computer programmers, the researchers hope to develop a software application that will allow law enforcement agencies or the Department of Homeland Security to isolate voices or sounds with reliability.
Sadly, though, there's a flip side to all this good news. In an interview with Computerworld magazine, Frank Abagnale, the notorious (former) criminal depicted in the movie Catch Me if you Can , remarked that it would be 4,000 times easier for him to commit his crimes today than it was 40 years ago-and that today he probably wouldn't go to prison for it.
"Technology breeds crime-it always has, it always will," he is reported to have said.
================================================
How to Write Business Plans, Business Proposals,
JV Contracts, Human Resource Package, More!
No-cost ebook "Beginners Guide to Ecommerce".
Business Writing by Nightcats Multimedia Productions
http://www.nightcats.com
================================================
Article Source:
http://EzineArticles.com/?expert=June_Campbell
How to Write Business Plans, Business Proposals,
JV Contracts, Human Resource Package, More!
No-cost ebook "Beginners Guide to Ecommerce".
Business Writing by Nightcats Multimedia Productions
http://www.nightcats.com
================================================
No comments:
Post a Comment